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Abstract 

Like many Electricity Distribution Businesses (EDBs), Orion has been on a journey to increase 
its LV network visibility to prepare for increased adoption of electric vehicles (EVs), solar 
generation (PV) and energy storage solutions. From a long-running LV monitoring programme 
to becoming the first EDB in New Zealand to reach an agreement on the provision of 5-min 
smart meter data from Bluecurrent, we are now collecting data from network assets, meter and 
behind-the-meter sources.  
 
However, visibility is only one piece of the puzzle. Leveraging these datasets to provide 
meaningful network insights requires the development of a robust analytics strategy and 
resilient data infrastructure to support it. In this paper, we will provide an overview of Orion’s 
Network Transformation Roadmap workstreams, our approach to developing power system 
insights from diverse datasets, the process of prototype to production and the challenges 
encountered along the way. 
 
By harnessing the power of advanced analytics, EDBs of the future will be able to proactively 
identify and mitigate potential grid congestion, optimise asset performance, and anticipate 
future demand trends with a new level of precision. Advanced analytics can also enable the 
development of predictive maintenance strategies, minimising downtime and maximising 
operational efficiency for the benefit of the communities we serve. 
 
Theme(s): Artificial intelligence, automation, digitisation, data and communication 
 
 
 
1. Background 
 
Orion’s low voltage (LV) network makes up approximately a third of its total network length 
across all voltage levels and supplies over 99% of its customers. However, existing methods 
of LV network management rely on lagging indicators which do not provide a comprehensive 
forward view of LV network performance. 
 
The Central Canterbury region is experiencing increasing levels of housing infill and adoption 
distributed energy resources (DERs) such as electric vehicles (EVs) and photovoltaic (PV) 
generation. Where these connections are added into existing network, capacity can be gradually 
eroded and result in customers experiencing degraded service in the form of power quality 
issues, solar curtailment or unplanned outages due to asset faults. These issues are often not 
evident through the traditional approach of monitoring transformer peaks and can lead to 
reactive and unpredictable expenditure. 
 
Therefore, there is a need to adapt our network management approach to address issues more 
proactively which requires a significant uplift in network visibility and data-driven insights. 
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2. Introduction to Network Transformation Roadmap 
Orion’s Network Transformation Roadmap (NTR) has been developed to drive the business 
change required to for Orion to transform into an intelligent Distribution Network Operator 
(iDNO) and be an enabler to the energy transition by 2030. 
 
The roadmap is structured into six workstreams (WS): 

 
WS0. NT Strategic Planning & Design – Focuses on providing direction for the foundation 
and capability build workstreams by ensuring alignment to the Orion Group strategic direction 
and changes in the regulatory environment. 

WS1. iDNO Enablement – Focuses on enabling the intelligent Distribution Network Operator 
(iDNO) capability required to seamlessly maximise the throughput of energy across our 
network with high penetrations of DER / LCT under utility-led, market-led or price-led 
operation / enablement modes. 

WS2. Scaling DER / LCT Connections & Conversions – Focuses on ensuring our network 
enables / does not block the path to customers decarbonising at scale and pace, by efficiently 
accommodating on our network the growing numbers of renewable energy sources, electric 
vehicles, energy storage, and other Low Carbon Technologies (LCT). 

WS3. Power Systems Insight Enablement – Focuses on enhancing capability in the 
Engineering Technology Domain (ETD) through integrated systems, spatial/temporal data 
analytics, and network modelling. 

WS4. System Visibility and Network Data Integration – Focuses on ensuring 
comprehensive situational awareness of network utilisation and performance through an uplift 
of asset information and network visibility from behind-the-meter to GXP level, including 
bidirectional energy flows from DER / LCT. 

WS5. Business Change & Enabling Services – Focuses on ensuring that there is effective 
planning, communication and orchestration of the NT business change. 
 

Key: Orchestration Foundational Capability build 
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To achieve the goals of scaling DER / LCT connections and enabling Orion to function as an 
iDNO, enhancing our capability for data-driven decision-making is crucial. Reliable data is 
fundamental to enabling this cultural shift. This paper provides an overview of work to date on 
key initiatives in Workstreams 3 & 4 to support this goal. 
 
3. Key initiatives 

3.1. Network topology & visibility improvements 
Proactive management of the LV network requires significant uplift in LV data quality (both 
topology and visibility) and robust processes to ensure that quality is upheld.  
 
Over the past few years, Orion has been focusing on increasing visibility through LV 
monitoring and smart meter data acquisition. We have now installed LV monitoring on 
approximately 12% of ground-mount distribution transformers and, in October 2023, became 
the first EDB in New Zealand to reach an agreement with Bluecurrent for the purchase of 5-
min Network Operational Data (NOD).  
 
Bluecurrent meters provide coverage to over 90% of Orion’s ICPs, offering unprecedented 
visibility of LV network performance. However, coverage across the network is not uniform, 
with considerable blind spots around Banks Peninsula and other pockets throughout 
Christchurch City (Figure 1). Therefore, handling of missing data is an important consideration 
when carrying out analysis with this new data source. 
 

 
Figure 1: Bluecurrent smart meter penetration percentage across the Orion Network (by distribution transformer) 

As visibility of the LV network increases, the gaps in topology data such as customer phasing, 
cable/line types and network configuration become the limiting factor in accurate modelling of 
the LV network and future scenarios. On Orion’s network, approximately 40% of LV overhead 
line types are listed as ‘unknown’ and only 20% of customers have field verified phasing 
information. Service main sizes are also not well documented and we experience significant 
lag in updates to LV connectivity records. 
 

Key 
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We are currently undertaking field work to improve the quality of our LV network topology 
records. These datasets can then be used to validate the accuracy of topology correction 
algorithms to impute missing or incorrect records across the wider network. Generation of these 
synthetic datasets can save a significant amount of time for field teams. However, they require 
a distinct handling and tagging process to ensure that field verified records are given 
preference, where available, and never overwritten by an estimated value. 

3.1.1. Field phase identification 
In 2023/24, field phase identification was carried out in the Milton zone substation supply area 
using a non-contact proximity meter along the street. The survey covered ~14,000 ICPs with a 
success rate of 64%. Some common issues encountered with being able to identify the phase 
of specific customers were cabled service mains direct off overhead lines, missing or incorrect 
ICP labelling and multi-unit installations. Further overboundary work is now underway to 
complete the remaining ICPs. 

3.1.2. Overhead conductor survey 
To benchmark the accuracy of LV line data, an LV conductor survey was also carried out in 
the Milton zone substation supply area. The survey covered 2,147 spans of network lines as 
well as 1,716 overhead service mains to assess the quality of our existing data and collect up-
to-date records. Survey results for network lines showed an accuracy of 81.8% while service 
mains were only 8.5% accurate (the remainder being either unrecorded or incorrect). Further 
survey work is pending upgrade of our GIS platform to ensure results can be incorporated into 
our master GIS dataset. 
 

3.2. Network data analytics 
Telemetry data such as HV SCADA points and LV monitoring provide ‘visibility’ of the 
electrical performance at different parts of the network. However, these datasets consist of 
large volumes of time-series observations which cannot be quickly analysed through manual 
means. Smart meter data compounds this issue by adding around 300 observations/ph/ICP/day 
(equating to approximately 80 million additional observations/day for Orion’s network). 
 
This quantity of data requires the development of business use cases and automated analytics 
to efficiently interpret and form insights to inform decision-making. For example, smart meter 
current, voltage and phase angle data being used to identify asset overloads, outages, incorrect 
connectivity, conductor sizes, customer phasing and DER.  
 
Over the last two years, Orion have been building capability to handle smart meter data and 
determining how to adapt our business-as-usual processes to make use of the new dataset. This 
includes establishment of a dedicated Power Systems team, DAVE (Data and Visualisation 
Engine) platform and data governance framework. These support our in-house use case 
development and prototyping in parallel to trials of the Gridsight and Future-Grid analytics 
platforms. By starting this capability development prior to the signing of our agreement with 
Bluecurrent in October 2023 we were able to rapidly make use of the new data as soon as it 
started flowing. 
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3.2.1. Analytic use case development 
The shift towards more data-driven decision-making begins with understanding the problem to 
be solved and where current lack of data is resulting in non-optimal decisions. This is the 
beginning of use case development.  
 
Once the objective of a use case is determined, stakeholders should be consulted to provide 
input on the derived data and accuracy levels required for decision-making. From here, data 
inputs, cleaning strategies and analytic methodologies can be developed and tested until the 
requirements are met. 
 
Since there are a multitude of use cases which smart meter data unlocks, prioritisation is 
required to ensure that the focus is given to the use cases which either provide benefit to largest 
number of stakeholders or provide a foundation for other use cases. Orion has applied 
descriptors to provide an indication of complexity to implement. These are: 
 

• Basic – Requires telemetry and basic asset data (e.g. asset ratings). Little to no reliance 
on network topology / configuration 

• Integrated – Requires telemetry data, electrical asset data and network topology / 
configuration. May require deterministic power flow modelling 

• Advanced – Requires telemetry data, electrical asset data, network topology / 
configuration and third-party data (e.g. weather, DER). May require probabilistic power 
flow modelling, machine learning and predictive analytics 

 
Grouping use cases by complexity provides better visibility of those which have common 
dependencies and aids in identification of opportunities for modular development. 

 
Figure 2: Modular analytic use cases, dependencies and data requirements 
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‘Off-the-shelf’ solutions such as Gridsight and Future-Grid Compass offer pre-built and tested 
applications which can be rapidly deployed to begin providing smart meter data insights 
without the need for in-house development. However, asset owners should not underestimate 
the internal capability uplift required to interpret the outputs, adjust existing workflows around 
new information and understand causes of anomalies. 
 

3.2.2. Validation methods 
When first using or developing new analytics, an understanding the required accuracy levels 
for different applications within the business are key. Results from the analytics should be 
assessed against field data or other high-confidence datasets to ensure that accuracy thresholds 
can be met for intended use cases. The validation process provides a benchmark of expected 
level of accuracy and an understanding of the influencing factors so that these can be 
communicated before being rolled out for wider business use. 
 
Example 1 – Gridsight phase identification 
One of the applications provided by the Gridsight platform is automatic detection of relative 
customer phasing per distribution transformer. Relative phasing can significantly improve the 
accuracy of transformer and circuit load imbalance estimations. The application performs 
clustering of customer smart meter voltages to infer which customers are connected to the same 
phase and assign a grouping of 1, 2 or 3.  
 
To validate this application, the following process was carried out: 

1. Non-contact phase identification was carried out in the Milton zone substation supply 
area to record actual customer phases.  

2. Each customer phase was compared to the phase groupings assigned by Gridsight, with 
the group to phase colour association for each transformer being determined by 
majority (e.g. if group 2 correlated with 90% of phase survey results relating to Bph, it 
was assigned Bph, with the remaining 10% being error).  

3. Discrepancies between inferred and surveyed phase were reviewed 
4. Phase configuration accuracy was then weighted based on the number of ICPs in 

group/total number of ICPs  
5. Weighted results were summed to determine the overall accuracy of the Phase ID 

application per transformer. 
 

Table 1: Example phase ID accuracy calculation for a distribution transformer supplying 81 ICPs 

 Phase configuration  

 R Y B RB RY YB RYB Overall 
accuracy 

ICPs (field survey results) 23 25 30 0 1 1 1 

96.3% 

% total ICPs 28.4% 30.9% 37.0% 0.0% 1.2% 1.2% 1.2% 

ICPs (Gridsight correct) 21 25 29 0 1 1 1 

Phase config accuracy 91.3% 100.0% 96.7% 0.0% 100.0% 100.0% 100.0% 

Weighted result 25.9% 30.9% 35.8% 0.0% 1.2% 1.2% 1.2% 

 
Validation across 67 transformers (3,139 ICPs) yielded an average overall accuracy of 89.5% 
(Figure 3) which was marginally below the target accuracy of 90% for this use case. Further 
investigation is required to determine the causes of lower accuracy as there was no clear 
correlation to number of ICPs or network type. 
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Figure 3: Weighted accuracy of Gridsight Phase ID application (per transformer) compared to Milton field survey results 

 
Example 2 – Load estimation (aggregation w/ linear scaling) 
In the absence of direct monitoring, smart meter aggregation can be used to estimate the loading 
of upstream assets such as distribution transformers, cables and lines. However, the accuracy 
of this is highly dependent on the available smart meter data downstream of the point of 
interest. Data gaps can be backfilled using a variety of methods, the simplest of which is a 
linear scaling based on the percentage of missing meters at each timestep. 
 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡 =  
∑𝑃𝑃𝑆𝑆𝑆𝑆

% 𝑆𝑆𝑆𝑆 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
 

 
One method to validate the accuracy of this estimation method is simply to compare the scaled 
smart meter power aggregate to total transformer load measured by LV monitoring (Figure 4). 
In this example, the smart meter aggregation with scaling applied meets the target accuracy for 
this use case of within ± 10% of the actual measured values. 

 
Figure 4: Aggregation of distribution transformer load (130 ICPs with 81% SM penetration) compared to actual load 
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However, since the purpose of this use case is to estimate loading of non-monitored assets, the 
accuracy cannot always be directly measured. Instead, the possible variance should be 
quantified based on an understanding of the factors influencing the backfilled result.  
 
Variance in results for this method is driven by uncertainty in which smart meters are present 
in the dataset and whether they are representative of those which are missing. The magnitude 
of this can be assessed by selecting sites with 100% smart meter penetration and taking 
randomised sub-samples of ICPs to simulate a lower penetration level. From each starting 
point, the linear scaling method is applied and results compiled to determine the probable range 
(green) against the actual total (red). Figure 5 and Figure 6 provide an example of the variance 
in the linear scaling method at smart meter penetrations of 50% and 90%. 
 

 
Figure 5: Aggregation of distribution transformer load (80 ICPs with 50% SM penetration) compared to actual load 

 
Figure 6: Aggregation of distribution transformer load (80 ICPs with 90% SM penetration) compared to actual load 

There are several key influencing factors which impact the variance of load estimation using 
this method. These are: 

• Smart meter penetration  
• Customer connection size 
• Mix of customer types 
• Total number of customers 
• Historical network configuration 

 
When input conditions are insufficient to meet the maximum tolerance for variance, aggregated 
results should be flagged as lower confidence or discarded to prevent corruption of higher-level 
analytic measures (e.g. transformer utilisation). 
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3.2.3. Production 
Once a use case has been built, iterated and validated against requirements, it is ready for 
production deployment. At this point, consideration should be made towards how often the 
data will need to be accessed and the complexity of the computation to determine whether 
insights should be pre-computed over the entire dataset or generated on user request. These 
options will have a bearing on the data storage requirements, compute time, user accessibility 
and, for solutions deployed to a cloud platform, cost. 
 
Documentation and training around new use cases should be included when rolling out to users 
within the wider business to ensure that there is an understanding of the insights produced, 
accuracy and any limitations for their use. 
 

3.3. Network model automation 
Network analytics can provide an excellent view of current and historic network performance. 
However, to fully understand the interactions on a network level, particularly in future 
scenarios, detailed power flow modelling is required. 
 
Historically, power flow models have been constructed manually, often based on a large 
number of conservative assumptions to account for gaps in data and low update frequencies. 
The impacts of these compounding assumptions are difficult to quantify and lack of model 
calibration can lead to high uncertainty in the results. Many networks have now shifted to 
models derived from Geographic Information Systems (GIS) or Advanced Distribution 
Management Systems (ADMS) but these often require manual interventions to correct data 
inconsistencies, particularly at the LV level. 
 
To run distribution networks more efficiently and reduce unnecessary network build, there is a 
need for more accurate power flow models in which scenarios can be run more regularly to 
reduce the level of uncertainty. Due to an increasing volume of studies required, scalability and 
consistency around modelling practices are important considerations which can be addressed 
through automation. 
 
There are three main aspects of power systems modelling which can be automated: 

• Model creation and calibration – building an electrical model representing the 
physical network connectivity and loading 

• Scenario and model management – creation of options for network alteration / 
augmentation and management of multiple study cases and scenarios 

• Power system studies – running of studies based on chosen scenarios and 
interpretation of results 

 
While Orion has some existing automations around HV and LV model creation and calibration 
which reduce the overhead of fully manual model maintenance, poor source data quality can 
still create bugs in the final model which require manual intervention to correct. In addition, 
power system study processes, methodologies, uncertainty and constraint thresholds are not 
well documented. 

To lay the groundwork for increased end-to-end model automation, Orion is currently working 
to document and standardise modelling practices within the company. This will include current 
and future input data requirements from source systems to inform the data model design of 
system replacements, where applicable. 
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We are also investigating use of the IEC Common Information Model as a mechanism to 
improve transfer of network model information between multiple platforms internally and 
piloting an AI-powered connectivity correction tool to improve GIS data quality and 
consistency ahead of our GIS platform migration. 

 
4. Challenges & lessons learned 
The shift from reactive to proactive network management has posed a number of challenges 
and has required a cultural shift in our data handling and decision-making practices. 
 

4.1.1. Data Quality, Governance, and Integration 
A key lesson learned was the critical importance of data quality, governance, and integration 
capability. Initially, our LV monitoring programme did not account for the integration of data 
back into Orion systems, instead relying on vendor-side systems for data management and 
visualisation.  While this approach may suit diagnostic and reactive management, it quickly 
became impractical for handling a mix of devices and enabling efficient analysis and reporting.  

Establishing the DAVE data platform and standardising monitor data across multiple 
providers enabled the development of automations which help to identify network and data 
quality issues for further investigation. This platform also facilitated easier integration of 
telemetry data with other sources, such as customer data and asset ratings, to support the 
establishment of limit-based analytics.  

As networks become more complex, there will be a need to transfer data between more 
systems and parties than ever before. Therefore, standardisation of network data and transfer 
mechanisms will be vital to reduce the overheads of custom integrations. 

4.1.2. Tools and Training 
To effectively handle large datasets, availability of big data processing / visualisation tools and 
prioritisation of data literacy among potential users is crucial. Training should cover 
fundamental concepts of data analysis, visualisation techniques, and interpretation skills to 
ensure that employees can engage with data in an informed manner. Developing the ability to 
identify key insights amidst large volumes of data is also vital for creating automated analytics 
tailored to specific use cases.  
 
Where relevant, training on cloud computing is also recommended so that data and engineering 
teams understand and manage associated costs, ensuring that data processing and storage are 
both efficient and cost-effective. 
 

4.1.3.  Culture and Processes 
Integrating new data and analytics into daily operations requires time and effort. Identifying 
early adopters within teams who are eager to embrace these changes can demonstrate the value 
of new insights, test workflows and help address initial challenges to foster buy-in from the 
wider team. This collaborative approach of engaging with stakeholders and subject matter 
experts to understand their data needs is crucial for reworking processes and incorporating new 
analytics effectively into business decision-making. 
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5. Conclusion 
In conclusion, the foundational work in the “System Visibility and Network Data Integration” 
(WS4) and “Power Systems Insight Enablement” (WS3) workstreams of Orion’s Network 
Transformation Roadmap represent an important step towards enabling proactive management 
of our LV networks. By building capability around how to leverage telemetry, data analytics 
and network modelling to serve new and existing business needs, we can significantly improve 
network and operational efficiency which will be essential for managing the complexities of 
operating our network with increased DERs and electrification. 
 
The cultural shift to enable more data-driven decision making involves placing high importance 
on data quality, data governance, change management and training. While there are still 
significant challenges around network data quality, establishment of use cases, methodologies, 
and accuracy levels can assist decision-makers by providing transparency around confidence 
levels and limitations. Engaging early adopters and supporting business-wide data literacy will 
facilitate smoother integration of new insights into business-as-usual to build a foundation for 
network transformation. 
 
 
 
 
 
 
 
 


	1. Background
	2. Introduction to Network Transformation Roadmap
	3. Key initiatives
	3.1. Network topology & visibility improvements
	3.1.1. Field phase identification
	3.1.2. Overhead conductor survey

	3.2. Network data analytics
	3.2.1.  Analytic use case development
	3.2.2. Validation methods
	3.2.3. Production

	3.3. Network model automation

	4. Challenges & lessons learned
	4.1.1. Data Quality, Governance, and Integration
	4.1.2. Tools and Training
	4.1.3.  Culture and Processes

	5. Conclusion

